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Abstract 

In this paper we address several issues pertinent to intrinsic evolvable hardware (EHW). The 
first issue is scalability; namely, how the design space scales as the programming string for the 
programmable device gets longer. We develop a model for population size and the number of 
generations as a function of the programming string length, L, and show that the number of 
circuit evaluations is an O(L2) process. We compare our model to several successful intrinsic 
EHW experiments and discuss the many implications of our model. The second issue that we 
address is the timing of intrinsic EHW experiments. We show that the processing time is a small 
part of the overall time to derive or evolve a circuit and that major improvements in processor 
speed alone will have only a minimal impact on improving the scalability of intrinsic EHW. The 
third issue we consider is the system-level design of intrinsic EHW experiments. We review 
what other researchers have done to break the scalability barrier and contend that the type of 
reconfigurable platform and the evolutionary algorithm are tied together and impose limits on 
each other. 

1.0 Introduction 

Evolvable hardware (EHW) refers to hardware that can change its architecture and/or behavior 
dynamically, usually under the control of an evolutionary algorithm (EA) [ 13. Evolvable 
hardware is usually implemented on a programmable or reconfigurable logic device, such as a 
field programmable gate m a y  (FPGA) or a field programmable analog array (FPAA). The 
device is programmed by loading a string of bits. The architecture and thus the function of the 
programmable device are determined by the string of programming bits. 

This paper addresses the issue of scalability of intrinsic evolvable hardware (EHW). We defrne 
intrinsic EHW as “on-line” evolution where the reconfigurable hardware platform is in the 
evolutionary loop. Intrinsic EHW thus takes into account any imperfections or peculiarities 
within the hardware device in calculating the final output. Several researchers have successfully 
derived electronic circuits using intrinsic evolvable techniques [2-111. However, all of the known 
successful evolved circuits have been only small or, at best, medium-sized circuit; to our 
knowledge, no circuit with more than 100 functional elements has been evolved intrinsically.’ 
But the programmable devices themselves can implement very complex circuits with many 

Thompson et al. [24] use 100 cells of a Xilinx FPGA to synthesize a tone discriminator but they are able to 1 

determine that only 32 out of the 100 cells are involved in generating the output. 
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functional elements. This raises the question of the scalability of intrinsic EHW; that is, how 
well the principles of intrinsic EHW will apply to circuits with 200, 1000, even 10,000 functional 
elements. 

To address the issue of intrinsic EHW scalability, this paper will look at several topics. First, we 
will look at the design space and how big it gets as the programming string gets longer. We 
define the design space as the total space of allowable circuits given the hardware device(s). 
(The definition of design space includes both the number of programmable “configuration 
blocks” and the number of programmable interconnects among the blocks. To make this 
discussion general, a configuration block is defined as the smallest programmable component on 
a hardware device; it can be as simple as a transistor or as complicated as an amplifier or a logic 
block.) In general, the larger the design space then the more complex circuit that can be evolved. 
We assume that complex is a good thing since it means that the circuit will (potentially) be better 
than a simpler circuit performing the same function (e.g., faster response or sharper filter rolloff) 
or it will be capable of more functionality. 

To evolve a complicated circuit requires a large design space and hence a long string of 
programming bits, L. (Roughly speaking, if no constraints are placed on the interconnects of the 
device, then the length of the programming string will grow in the order of O(nbZocks) where 
nblocks is the number of configuration blocks in the design [I].) The size of the design space is 
2L but an evolutionary algorithm (EA) does not necessarily need to do an exhaustive search. 
Instead, the EA usually only needs to evaluate a fraction of the total possibilities to derive a 
“good” circuit. (Note that there are some cases where a total search of the design space is 
required [12] but those cases are rare in intrinsic EHW.) To determine how many circuit 
evaluations are required to derive a good circuit, we develop equations for the population size, N, 
and the number of generations till convergence, ngen, given the length of the programming 
string. We then look at some implications that result from these equations and specifically 
address the question of whether the design space can become too big. 

The second topic that will be addressed in this paper is the timing of intrinsic EHW applications. 
intrinsic EHW is different from extrinsic or “off-line” EHW where the operation of the hardware 
device is simulated. This paper will look at the timing issues involved with intrinsic EHW and 
discuss “why does it take so long” to evolve a circuit intrinsically. We will look at two different 
intrinsic EHW setups and see how long each one takes to evaluate each member of the 
population and where the timing bottleneck occurs. 

The third topic that we consider is what we call “system-level” design. In system-level design 
we consider the EA in tandem with the hardware platform in the design process rather than 
treating the two separately. We review what other researchers have done to break the 
“scalability barrier” and evolve larger, more complicated circuits. We contend that the 
evolutionary process and the type of reconfigurable platform are tied together and impose limits 
on each other. These two components of hardware evolution are a system to be considered 
together in the design of an intrinsic EHW process. 

The outline for this paper is as follows: Section 1.1 discusses the unique aspects associated with 
intrinsic EHW as opposed to extrinsic EHW or standalone EAs. Section 2 develops theoretical 
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equations for the population size and number of generations till convergence based on the length 
of the programming string (chromosome), L. We compare these equations to results fiom 
successful intrinsic EHW experiments and see that there is good agreement between our model 
and the experimental results. From these equations, we can also estimate the number of circuit 
evaluations that are required to derive a “good” circuit intrinsically and look at implications of 
our model. Section 3 discusses the timing of intrinsic EHW experiments. Timing calculations 
are made for a relatively slow experimental configuration and a fast configuration. For both the 
slow and fast configurations, we show that increasing the processor speed does not significantly 
affect the overall timing. Instead, circuit evaluation time is the “long pole in the tent” and it must 
be reduced to see a significant reduction in intrinsic EHW timing. Section 4 looks at some of the 
approaches used to evolve larger circuits. In general, the current state of the practice is to limit 
the search space in some way to evolve/derive larger circuits. This section also discusses the 
issue of designing the evolutionary algorithm in conjunction with the reconfigurable platform in 
a system level design approach. Section 5 gives the main conclusions of the paper. 

1.1 Issues germane to intrinsic evolvable hardware 

There are sevcral issues unique to intrinsic evolvable hardware; that is, these issues scparatc 
intrinsic EHW from extrinsic EHW or running EAs standalone. 

The first issue is that not all the programming bits have equal validity or equal importance in 
determining the output. Specifically, the routing bits, which determine which functional 
elementskonfiguration blocks are used within the hardware platform must be set before other 
adjustments can be made. The output of the device is essentially random until the routing bits 
channel the input signal(s) fiom the input port to the output port. After the routing bits have 
been set (either apriori by the user or by the EA), then the other bits can be evolved to give the 
proper gain, wave shaping, or logic equation that is required. 

The second issue separating intrinsic EHW is that the timing aspects associated with the EA are 
different. For a stand alone EA, all the processing (even evaluation time) is done on the host 
computer, so the speed of the host is a major factor in performance [ 131. We will show that the 
speed of the hostlcentral processor is not a major factor in intrinsic EHW but that measurement 
time is the major timing bottleneck. In addition, certain speedup methods, such as using parallel 
algorithms, that work with standalone EAs are difficult and expensive to implement in intrinsic 
EHW and thus are not currently used. 

The third issue that makes intrinsic EHW unique is that there are often many possible solutions. 
Namely, with intrinsic EHW there are several possible configurations that give a correct or good 
result. For example, several different logic blocks on a FPGA can be used to form an AND 
operation. Likewise, on most FPGAs a single logic block can be configured in several ways to do 
an AND operation. Thus, the simple operation of ANDing together two inputs has several 
possible implementations in an FPGA and that does not include the spurious implementations 
that make use of capacitive coupling or other non-deterministic effects. Similarly in an FPAA, 
inputs can be routed to one of several possible input amplifiers without affecting the overall 
output. For example, to achieve an overall gain of, say, 12, the gains on two successive 
amplifiers can be set to any combination that multiply together to give 12: x3 then x4, x6 then 
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x2, x2.5 then x4.8. So instead of one unique optimum, the search space in intrinsic EHW often 
has several solutions that all have equal validity. 

The fourth issue is that the design of the EA is not independent of the reconfigurable platform. 
For example, an EA that works and derives a good circuit on an FPGA will have to be modified 
and changed to work on an FPAA or even another type of FPGA. Specifically, the 
representation of the genome within the EA and the fitness function may both have to be 
changed. The changes could involve modifying the number of bits in the programming string, 
setting certain routing bits so that damage is not done to the device, changing the population size 
or other parameters so that the EA converges within a suitable time frame, or changing the 
structure of the EA entirely. The hardware platform imposes constraints and limitations on the 
type of EA that can be implemented. 

All of these four issues make the problems associated with intrinsic EHW unique as compared to 
other types of evolutionary problems. Thus, there needs to be a model that accurately predicts 
the behavior of intrinsic EHW as it scales to larger problems and identifies the key issues 
associated with intrinsic EHW. This paper proposes such a model. 

2.0 Size of design space 

The goal is to determine the number of generations and the size of the population for a given 
programming string length, L. We develop a model for intrinsic EHW and derive equations for 
the number of generations, ngen, and the population size, N, given L. These equations for ngen 
and N are useful in three ways: (a) they allow us to compare the results to actual successful EHW 
experiments and thus confirm the model; (b) they allows us to set apriori N and ngen for future 
EHW experiments; (c) they allow us to see the complexity of N*ngen as a hnction of L and thus 
see why EHW does not scale well to medium or large circuits. 

When calculating the expected number of generations till convergence and the population size, 
one must determine what type of model to use for the building blocks (BB) in the programming 
string. (Building blocks are short, highly fit bit strings within the longer programming string.) 
Two possible models have been evaluated in the literature [ 14-17]. In the first possible model, 
all the building blocks have a uniform weight. An example is the OneMax problem where all the 
bits (or building blocks) have a weight of 1 and the goal is to maximize the number of 1s in the 
bit string. This first model has uniform scaling [ 171. In the second possible model, the BBs are 
exponentially scaled in such a way that the most significant BB has a weight that exceeds the 
sum of all the lower order BBs combined [ 14, 151. An example of this model is the BinInt 
problem, where each bit (or BB) has a weight of 2"' where m is the position of the bit. When a 
GA operates on this type of problem, the more significant bits (or BBs) converge faster than the 
less significant ones. Overall, there is a sequential convergence of bits that resemble a row of 
dominos falling down one after the other. (Hence, this type of convergence has been called 
domino convergence.) 

We contend that the BBs in intrinsic EHW follow an exponential scaling such as the BinInt 
problem. There are two reasons for this contention. First, the nature of hardware-in-the-loop 
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evolution requires that certain parts of the problem be solved before other parts of the problem 
become relevant. A clear case is the issue of routing bits. Until the signal is routed to a 
particular amplifier, gate, switch or other device, it does not matter what the gain or function of 
that device is set to. Thus, the routing bits must be set and then the gainddevice functions can be 
set to fine tune the fitness function. Thus, not all parts of the programming string are equally 
important or equally relevant. Some portions of the programming string (e.g., the routing bits) 
are responsible are responsible for large changes (and thus high variance) in the fitness function 
while others only affect the individual’s fitness fimction by a small amount. In a similar vein, 
the gain bits for an amplifier in an FPAA tend to be binary weighted so even the bits within a BB 
are exponentially scaled. The second reason that we contend that the BBs are exponentially 
scaled is that it leads to good agreement with the experimental results from the literature. This 
agreement will be made clearer in section 2.3. 

2.1 Number of generations 

In this section we apply the model of Lobo et al. [14] to intrinsic evolvable hardware. The model 
makes the following assumptions: 

a. The programming string (chromosome) can be broken down into “sub~nctions” or 
building blocks that are each k bits long. 

b. There is perfect BB mixing so a BB is not disrupted during crossover. 
c. The fitness of each BB corresponds to a needle in a haystack function where the one 

solution (the good solution) has a max fitness and all the other solutions have the same 
fitness,fmi,,. 

Lobo et al. calculate the selection pressure for each generation of the GA. At each generation, a 
certain number of BBs, h, have converged. Since the BBs are geometrically scaled, the most 
salient BBs will converge first so we can assume that the most salient h BBs have converged and 

L the remaining (- - h) are still in their initial random state. It takes tgen generations for h BBs to 
k 

converge and they derive tgen as 

In this equation, k is the size of each building block and I is the selection intensity. For a 
constant selection intensity, then, the number of generations till convergence is linear h c t i o n  of 
the importance or salience of the BB in the programming string. 

To determine the number of generations till all BBs have converged, ngen, we set h equal to the 
number of BBs in the string (A = LA), and let the BB size, k, be 4. If binary tournament 
selection is used, then I = l /&.  The number of generations till convergence is thus 
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-In2 L 
1 4 

- = 1.97L = K,L = O(L) ngen = 

The value of the constant K I  is not critical at this point. Lobo et al. state specifically: “the 
constant factor obtained with the domino convergence model shouldn’t be taken too literally 
because this kind of modeling is not completely exact. Nevertheless, the functional form is 
correct (and is confirmed by experiments) and says that the average number of generations until 
convergence grows linearly with respect to the number of building blocks.” [ 141 In section 2.4.2 
we determine an overall constant for N*ngen based on comparisons with experimental results 
and see that 1.97 is too large. But the conclusion is clear: the number of generations till all BBs 
converge is an O(L) process. 

2.2 Derivation of population size 

Several researchers have investigated the optimal population size for genetic algorithms [ 16-20]. 
Our goal is to determine the population size given the length of the programming string. We 
break the discussion into two cases: one for which the building blocks in the programming string 
are linearly scaled and one for which the building blocks are geometrically scaled. 

2.2.1 Linearly scaled building blocks 

If the building blocks are linearly scaled, the the approach of Harik et al. [ 171 can be used to 
determine population size, N, in terms of length of the chromosome string L. Harik develops a 
model of GAS based on an analogy between genetic algorithms and one-dimensional random 
walks. The result is an equation that relates the size of the population with the desired quality of 
the solution, as well as the problem size and difficulty. The final equation for N is given by [2 11 

ohhJ7i‘(Llk-1) 
d 

N = 2k-‘ ln(a) 

where 
a = probability of GA failure 
k = building block order (length) 
L = length of programming string 
d = signal-to-fitness difference 
q , b  = average root mean square building block standard deviation 

Despite the rather complicated form of the equation, it does quantify many of the intuitive 
notions about the difficulties of GAS. For example, problems with long building blocks (long k) 
are more difficult to solve than problems with short building blocks. Problems with a high 
variability (q,b high) are hard because it is difficult to detect the signal coming from the good 
solutions when the interference from not-so-good solutions is high. Longer problems (larger L) 
are more difficult because there are more sources of noise. However, the GA scales to the 
problem size; the equation shows that the required population size grows linearly with the size of 
the problem. 
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For our purposes, we assumed that the programming strings are binary (or binary alphabets), the 
building block size is 4, the probability of GA failure is .01, the fitness difference between the 
best and 2”d best building block is 1, and the root mean square fitness variance ( ofb ) is 0.04. 
This yields an equation for population size as 

where L is the length of the programming string. This result shows that N scales as the square 
root of L. The constant (1 3 in this case) will vary based on the problem difficulty (in general it 
will be a larger number) but N is still O(L’“). Also, even though we assumed a relatively simple 
problem difficulty when choosing parameters in the equation for N, the value of N still grows as 
o(L 

2.2.2. Geometrically scaled building blocks 

An alternate derivation of population size must be used if the building blocks are geometrically 
scaled. When a GA operates on this type of problem, the more significant building blocks 
(gcnes) converge faster than the less significant ones. Given a large enough population size, all 
of the BBs will converge correctly one after the other. But if the population size is not large 
enough, then the GA may have trouble converging all the way down to the least significant BB 
[ 141. The problem occurs because even when there is no selection pressure on a particular BB 
(the higher order BBs have not yet converged) the frequencies of the different BB combinations 
(alleles) will fluctuate due to chance variations and may eventually be lost completely from the 
population. This effect is known as random genetic drift. 

The effects of the genetic drift can be modeled based on the physical process of diffusion [ 141. 
The result is a second-order partial differential equation that gives a distribution of the number of 
population members with a certain BB value. From this distribution, one can derive an 
“extinction time” or the average number of generations to lose a building block. Given that we 
want to correctly solve all of the BBs, then the population size, N, must be selected large enough 
so that all BBs converge before random drift leads to the loss of one or more BBs. From Lobo et 
al., 

(2k -1)A. 
N =  1 

where A* is the number of BBs that are solved correctly. In our case, we want all of the BBs to 
converge so A* = LAC; letting k = 4 and I = l/& (for binary tournament selection) leads to 

As with the equation for ngen, the value of the constant K2 is not necessarily 5.33 but the overall 
conclusion is clear: the population size grows linearly with the length of the programming string. 

2.3 Comparison with experimental results 
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We contend that the BBs in intrinsic EHW will be geometrically scaled and thus follow a 
domino convergence pattern. If so, then the number of evaluations, N * ngen, will be O(L) * 
O(L) or O(L2). (If the BBs are linearly scaled, then the number of evaluations will scale as only 
O(L) [21].) To confirm our contention, we look at several successful intrinsic EHW experiments 
and look at the length of the programming string, the population size, and the number of 
generations to reach convergence (see Table 1). Also included in the table is some background 
information about the reconfigurable hardware device that was used, the intended application 
and the primary researcher who performed the experiment(s). 

Application Primary 
Researcher1 
Reference 

~ FPGA ) 1800 I 15 1 5000 250,000 
XC62 16 

Custom 2344 7000- 425,000 
(FPTA) 10000 

Table I :  Chart of successful intrinsic evolvable hardware experiments. Columns show the 
device type, the length of the programming string, the population size, the number of generations 
till convergence and then the application and researcher. Note: FPTA2 = Field Programmable 
Transistor Array from Jet Propulsion Lab, FPTA = Field Programmable Transistor ArrayJi.om 
Germany. 

I Ereford Averaging 
circuit for 3 
sensors 

feedback 
control system ~- 

Motor Gwaltney 
controller [8] 
Half wave Ferguson [22]/ 
rectifier for sine Stoica 

4-bit digital-to- Zebulum 
~ wave [41 

analog ~ 3 1  
converter 
Tone Thompson 

analog 
converter 

We compared our model that relates the number of generations and population size based on the 
programming string length to the data in Table 1. The model says that the total number of 
evaluations should grow as L2. To test the model we performed a regression analysis between 
N*ngen and L2. That is, we determined PO and P I  via regression in the following equation: 

Number of evaluations = N*ngen = ,8, L2 + Po 
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Regression yielded PO = 7024 and P I  = .0761 with a coefficient of determination, R‘, of .9980, so 
there is a very good agreement of the experimental data to the L2 curve. Figure 1 shows the 
visual comparison of our model prediction (solid line) to the results from successful intrinsic 
EHW experiments. Again, there is good agreement between the model and the data. We thus 
conclude that the total number of evaluations is an q L 2 )  process. 

Figure I :  Plot of actual data points and O(L2) curveJit for successful intrinsic EHW 
experiments. Asterisks show numbers fiom intrinsic EHW experiments and curve shows best fit 
o(L’) curve. 

There are many similarities and differences among the different experiments shown in Table 1 
and Figure 1. A key similarity is that all of the researchers used a variation of the “simple” GA. 
That is, all members of the population were evaluated and then better ones were selected, single 
point crossover and mutation were applied and the cycle was repeated. Another similarity is that 
all of the researchers applied the crossovedmutation to the binary bit string directly, i.e., there 
were no special encodings between genotype and phenotype space. In addition, all the circuits 
that are derived during these EHW experiments are relatively simple circuits. 

The differences among the different experiments are striking, however. There are five different 
reconfigurable platforms: two Field Programmable Analog Arrays (FPAA) (the ispPAC30 and 
the ispPAC10 from Lattice Semiconductor), the Field Programmable Transistor Array (FPTA2) 
(stand-alone board-level evolvable system - SABLES - from Jet Propulsion Lab), the Field 
Programmable Transistor Array (16x1 6 configurable array of CMOS transistor cells) and a Field 
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Programmable Gate Array (FPGA) (Xilinx XC62 16). These are very different configurable 
devices with very different architectures. The FPAAs utilize internal analog amplifiers with 
analog inputs and analog outputs. The FPGA uses internal digital blocks with digital inputs and 
digital outputs. The FPTA2 is a fine-grain device that can be configured to handle analog inputs 
or digital inputs. And the programming string length varies by a factor of over 85 (almost 2 
decades) in these successful experiments. Thus, our model has been shown to fit a wide range of 
platforms and string lengths. 

We note that our model fits empirical data even though the equations for N and ngen are based 
on simplified implementations of statistical processes and genetic algorithms with crossover, but 
no mutation. Goldberg refers to these equations as facet wise models, because they isolate a 
single or small number of facets within the context of a larger problem [25]. These facet wise 
models give insight into the process of applying GAS to problem solving, and the models are 
verified using simulations of the GA and problem to be solved [ 17, 251. However, the problem 
of autonomous circuit design is considerably more difficult than the BinInt problem used by 
Goldberg and his colleagues to develop the model. The relationship among the building blocks 
within the programming string/chromosome may not be easily identified in physical hardware. 
This makes the precise application of such analytical models more difficult, but in a general 
sense they still apply. The results obtained here for the number of evaluations, N*ngen, are 
estimates and, in general, represent the minimum number of evaluations needed. 

2.4 Design space implications 

2.4.1 Limiting size of design space 

Based on our model of the design space, we can estimate how long it takes to program a device 
using evolvable hardware techniques. The following chart lists several reconfigurable devices 
that have been used or are being considered for intrinsic evolvable hardware. The table lists the 
devices, L (the number of bits required to do the programming), 2L (the total number of possible 
combinations given the number of programming bits), N*ngen from our design space model 
(using PI = .0761 and PO = 7000 as derived from regression), and estimated time to program the 
device assuming 50 ms per evaluation of each population member. The evaluation time will 
vary considerably based on application and experimental setup with 0.5 seconds per evaluation 
being close to worst case (see Section 3) and 0.05 seconds per evaluation being a nominal value. 

Table 2: Growth of design space and estimated time to evolve a design for various 
reconfigurable platforms. 
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From table 2, we conclude that intrinsic EHW will be limited to small and medium-sized circuits 
for the foreseeable future. To derive a large, moderately-complex circuit, the programming time 
for the reconfigurable device quickly grows beyond a reasonable value. For example, to evolve 
a circuit that utilizes half of the resources of the Virtex XCV50 would take over 50 years! The 
evaluation time is just too large to evolve completely a large circuit with current technology. In 
section 3 we explore where the timing bottleneck occurs and show that even a large speedup in 
processing speed does not significantly reduce the total evaluation time. 

2.4.2 Other limitations inherent in intrinsic evolvable hardware 

Long evaluation times are one reason that it is difficult to evolve large circuits intrinsically. In 
addition to the time involved, there is also the possibility that an appropriate circuit will not be 
discovered. Two phenomena can intercede to preclude a hardware evolution from discovering a 
good circuit: genetic drift and non-uniqueness. 

As mentioned in section 2.2.2, genetic drift occurs when there is no selection pressure on some 
of the BBs. In this case, one or more BBs will fluctuate stochastically and can eventually reach 
an “absorbing” state from which it can not reach the optimum value [ 141. This can be a real 
problem with intrinsic EHW. Researchers must set the population size large enough so that all 
the BBs converge. If the population size is too small, then the best or even a suitable circuit may 
not be found. From the empirical results in Table 1, we see that the population size can vary 
considerably and still lead to successfbl results. To avoid genetic drift, however, we recommend 
that the population size be set to a relatively large value. 

The issue of genetic drift has a practical consideration in picking the size of the design space. A 
common problem that occurs when it is known that there is a known good solution within the 
search space. For example, an adequate solution is possible with one cell on a programmable 
device. Will the results improve if the search space is expanded to include two cells? By 
expanding the search space (in this example, doubling the search space) then the programming 
string L will also double. This will lead to four times the number of circuit evaluations and also 
greatly increase the chances that genetic drift will lead to a suboptimal solution. Therefore, a 
researcher should pick as small design space as possible. If one block is sufficient to solve the 
problem, then do not pick 2 blocks and hope a better circuit will be found. 

The second phenomenon is that there may be multiple possible solutions to the same circuit: 
non-uniqueness. Non-uniqueness implies that many different hardware configurations can lead 
to the same output. For example, in an experiment that derived a circuit to average three sensors, 
Hereford and Pruitt report that “there are many different redundant configurations that the 
genetic algorithm can find’ [ 5 ] .  Likewise, Thompson talks about “being able to exploit the 
subtle interactions between adjacent components that are not connected directly” 124). This non- 
uniqueness is especially a problem with large design spaces. The genetic algorithm may find a 
solution that leads to a large fitness value but the solution may utilize parasitic coupling within 
the hardware device and not take into account all of the inputs or have some other spurious 
result. This would limit the applicability and transferability of the evolved circuit. What is 
needed for successfid evolution is not only a well-defined peak in the search space but also a 
path to get to that peak. Multiple possible solutions within the device can lead to the GA 
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converging to a circuit solution that has a lot of “junk” elements or one that is not portable [24]. 
One way of overcoming this problem is to pick a proper fitness function. In addition, one must 
select the training data so that all possibilities are covered. 

3.0 Timing issues 

We want to consider how to reduce the evaluation time required for intrinsic evolvable hardware. 
In general, an EA used in intrinsic evolvable hardware has the following pseudo-code flowchart: 

Begin EA 
Initialize population 
While (not done) do 

Evaluate each member of population 
Select ion 
Crossover 
Mu t a t ion 

End while 
End EA 

For intrinsic EHW all of the steps can be done on the processing computer except the evaluation 
of each member of the population. The evaluation of each member requires the following steps: 

Download bit string to device (tdown) 
Update device (configuration, gains, routings) (tupdate) 
Measure new output (tmeasurc) 
Read output and transfer to processor (tread) 

We thus define the evaluation time as 
- tevaluatc - tdown + tupdatc + tmeasure + tread- 

The t’s denote the time for each step. (Note: some implementations may not require each step in 
which case t can be set to zero for that step.) These steps must be done for each member of the 
population. If the population size is denoted N, then the calculation time for one loop of the EA 
is 

where tproccssor is the time for the processor to do selection, crossover, and mutation. The total 
calculation time is then 

where ngen is the number of generations in the EA. 

Consider the impact on the calculation time due to increased processor speeds. The metric we 
are trying to minimize is execution time, denoted above by ttotal or, equivalently, &le. The issue 
is that processor speed (tprocessor) is only one part of the equation, so improvements in processor 
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speed only affect one part of the whole process. By analogy with computer design, we can apply 
Amdahl’s Law [26] which says 

born 
t umte  

t,,,, 
tread 

tpmess 

execution time after improvement = (execution time aflected by improvement/amount of 
improvement) + execution time unaflected 

12.6 usec 
9usec 
10 msec 
25 msec 
.6 msec 

Time to download 112 bits from PC to pac30 over JTAG cable 
Time to erase and reprogram EECMOS cells and settling time of device 
Integration time for DMM for 4.5 digit accuracy 
Transfer time for data from DMM to PC over GPIB bus 
From timing measurements on Pentium 111 computer 

For example, assume that processor speed increases by a factor nspeedup. Then Amdahl’s Law 
says that 

fprocess 
fcycle(after speedup) = + n*(fdown fupdote tmeasure tread 

nspeedup 

In other words, tcycle in not reduced by nspeedup; rather, only tprm,, is reduced by nspeedup. 
Since tprwc,, is only a fraction of the &le, increasing the processor speed has only minimal affect 
on the overall time. 

To illustrate the (lack of) effect of increasing computer speed, we look at some sample numbers 
for two different intrinsic EHW setups. One setup utilizes a Field Programmable Analog Array 
(FPAA) from Lattice Semiconductor (ispPAC30) controlled by a PC. A digital multimeter 
(DMM) is used to read the output and a GPIB (IEEE 488) bus is used to transfer the data to the 
PC. This is an EHW setup using relatively slow devices. The second setup is the stand-alone 
board-level evolvable system (SABLES) developed by researchers at Jet Propulsion Laboratory 
[4, 221. The SABLES system is a fast intrinsic EHW setup. 

Table 3 gives sample values for the various time delays for the FPAA setup. Calculating fcYcle 

from these values (assuming a population size of 50) yields 

fcycle = 50*(35.02) + .6 = 175 1.6 m e c  = 1.75 sec. 

I Time I Value I Comment I 

From Table 3 and the calculation of fcycle, it is clear that the processor time (the time to do 
selection, crossover, etc) is a very small hct ion of the total cycle time. Even if we used a new 
and fast computer that was, say 5 times faster (nspeedup = 5 )  than the Pentium 111, Amdahl’s law 
says that the new execution time will be 

fcycle(faSt computer) = 0.6/5 + 175 1 = 1751.12 msec. 

Therefore, the speedup in processor speed will have an insignificant impact on total time in 
intrinsic evolvable hardware experiments. Clearly, much more can be gained in this example by 
decreasing the measurement and read times. 
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Now consider the cycle time for the fast (SABLES) EHW setup. From Stoica et al. [4], the 
stimulus/response time is 1.13 msec per population member. The GA processing is done using 
an on-board Digital Signal Processor (DSP) and Stoica et al. state that it takes 6 msec to generate 
a new population. Thus, 

tcycle = 50 * (1.13 msec) + tprocessor 
= 62.5 msec. 

It is clear that the SABLES setup provides an enormous speed advantage over the (slow) FPAA 
setup - it is approximately thirty times faster. But again Amdahl’s Law shows that speeding up 
(i.e., reducing) the processor time will have only a minor impact on the overall execution time. 
Again assuming a speedup of 5 in the processor yields 

Lycle(fast processor) = 56.5 +6/5 = 57.5 msec 

or only about an 8% time reduction for a large improvement in processor speed. 

In general, using fast devices or architectures (such as SABLES [4], FPTA [lo], or COMBO6 
[ 1 11) is a good approach for intrinsic EHW. However, one variable that can not always be 
arbitrarily reduced is the measurement time, tmeasure. Its lower limit may be set by the 
settlinghntegration time of the measurement device (as in the FPAA example) or the lower limit 
may be set by the nature of the fitness function. For example, in a motor controller experiment 
performed in [8] several cycles of a low frequency sine wave must be monitored to calculate the 
fitness. The fitness function requires one cycle of a 2 Hz sine wave per individual or roughly 0.5 
seconds per evaluation. 

We have shown that improvements in processor speed will not significantly impact the total time 
in intrinsic EHW experiments. Processor speed will thus have only minimal impact on 
improving scalability in intrinsic EHW experiments. This is in contrast to Genetic Programming 
and other extrinsic EHW experiments where increases in processor speed have led to 
development of more complicated circuits [ 131. 

4.0 System level design 

The previous sections provide quantitative results for intrinsic hardware evolution. One result is 
the derivation of equations for N and ngen given the length of the programming string, L. The 
second result is an analysis of the timing components for intrinsic EHW. These results are 
qualitatively intuitive based on experience and empirical data, but have not been quantified in 
published literature for specific devices used in intrinsic hardware evolution. In this section we 
discuss the implication of these results for practical implementation and give observations about 
the current state of practice for intrinsic EHW. We also discuss the idea of a “system design”, 
where considerations for the interaction between the evolutionary algorithm (EA) and the 
reconfigurable platform contribute to the design of the overall evolutionary process. 

From published literature we observe that when researchers use intrinsic hardware evolution, 
they are primarily concerned with hardware platform development. However, when researchers 
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are concerned with design of the evolutionary process, or with evolving a static design, such as 
an antenna, extrinsic hardware evolution is used. We define the evolutionary process to include 
an EA, representation of hardware in chromosomes, population sizinghnitialization and fitness 
evaluation. Work involving the use of a physical platform such as the FPTA2, FPGAs, 
programmable analog arrays or multiplexed components routinely employ standard GAS, and in 
some cases standard Evolutionary Strategies (ES) [22, 27 - 311. Researchers developing more 
complex approaches to the evolutionary process frequently use simulated hardware components. 
[32 - 351. One reason for this may be that simulation lends itself more easily to implementation 
of more complex algorithms than a hardware platform with its resource and timing constraints. 
Further, some researchers are interested in rapid execution and implementation of the 
evolutionary process in hardware [36, 371. This necessarily limits the complexity of the 
evolutionary process. The evolutionary process and the platform are intimately tied together and 
impose limits on each other. The platform imposes the real limitation of its performance 
capabilities and its level of reconfiguration. The evolutionary process imposes limitations due to 
design of the fitness function, representation of hardware in chromosomes and selection of 
operators. 

As a simple example of the relationship betwccn proccss and platform, consider an FPGA and an 
FPAA. The FPGA is designed specifically to implement digital circuits, while the FPAA is 
designed specifically to implement analog circuits. Assuming the same EA is used as the core of 
the evolutionary process for both devices, there will be different requirements for the design of 
the fitness function and the stimulus signals used for digital versus analog design. Further, if 
FPGA devices from two manufacturers are considered, there are in many cases significant 
differences in the configurable blocks within the device. One device may use a mixture of look- 
up tables to implement gates as well as fixed logic gates (Xilinx Virtex, Altera Stratix), while 
another may use routing only with fixed logic gates (Actel ProASIC). Even within similar 
configurable block approaches, the implementation of look-up table architectures varies with 
manufacturer. Chromosome representation will necessarily be affected by the architectural 
design of the reconfigurable device, and the representation may require the use of additional 
operators, or modifications to crossover and mutation operators. The evolutionary process must 
accommodate device performance capabilities in terms of parameters like bandwidth, electrical 
signal characteristics and possibility for damage. The reconfigurable device and the evolutionary 
process are a system that should be considered together in the design of an EHW platform. A 
system level approach to design that considers the characteristics of the device and the 
interaction of the EA with the device will contribute significantly to success in the evolution of 
complex systems. 

It is pointed out in the literature that the standard GA in practice does not display the robustness 
described by Holland [25]. Thornton goes so far as to say that the schema theorem assumptions 
are hard to meet and the building block assumption violates the schema theorem such that the 
standard GA is only successful in cases, where it is guaranteed not to work effectively [38]. 
While Goldberg does not agree that the assumptions of the schema theorem cannot be easily met, 
he does agree the crossover operator in a standard GA employing selection and crossover often 
needs modification to work effectively. Further it is noted that choice of operators affects the 
success of the evolutionary process in discovering the “best” solution in a given application [17, 
39, 401. An overview of the variety of algorithms considered as being Evolutionary 
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Computation and the various forms of crossover, mutation and selection operators are given in 
[41]. Goldberg notes there is much “fiddling” with codings and modifications to operators that is 
reported by researchers who are seeking good results for a particular application [25]. The 
published literature acknowledges that development of the evolutionary process and the platform 
(simulated or real), along with the intended application of the evolved solution, are intimately 
tied. 

Goldberg and his colleagues have concerned themselves with developing design guidelines for 
applying GAS to complex practical applications. Their work has demonstrated that GAS using 
fixed crossover operators require exponentially increasing populations to get good solutions to 
complex problems. A primary result of their research is that a selectorecombinative GA process 
using tractable population sizes must include the identification of linkage between bits in a 
chromosome before attempting to converge to a good solution. And, the GA should provide a 
method of emphasizing the linkage. An example of their efforts, the fast messy GA, addresses 
the issues of establishing linkage in a chromosome to identify building blocks and the need for 
rapid convergence in complex problems, while using a reasonable population size. The fast 
messy GA is an example of a so-called “competent GA” [25]. 

We note that many approaches for evolving complex circuitry involve using previously evolved 
circuits or known circuit configurations. In order to evolve a 4-bit digital-to-analog converter 
(DAC) on the JPL FPTA2, researchers used evolved circuits in a hierarchal approach along with 
human designed op-amp configurations. First a two-bit DAC was evolved and used as a building 
block for a 3-bit DAC. This 3-bit DAC is used as a building block for a 4-bit DAC. Op-amp 
configurations are used for amplification and buffering [23]. Previously, a 4-bit DAC was 
evolved hierarchically in simulation on a Sun SPARC 2 workstation. This experiment 
demonstrated building block encapsulation as a method of reducing the total number of 
evaluations needed to evolve the 4-bit DAC [42]. Torreson applied similar principles to evolve 
systems for character recognition and prosthetic hand control [43]. Koza, et. al., use the concept 
of sub-circuit re-use in the evolution of analog filters using Genetic Programming (GP) [32]. A 
similar notion is explored in the evolution of a 3-bit multiplier by Vassilev and Miller using 
Cartesian GP with a (1 + A) Evolutionary Strategy (ES) [44]. This approach could be applied to 
intrinsic EHW. Time for evolution is reduced by using already evolved components, rather than 
forcing the evolutionary algorithm to re-evolve basic circuits. Humans routinely employ such a 
strategy in the design of electronic circuits. While such approaches make sense from a practical 
standpoint, they are viewed as limiting the design space. This view of design space defines such 
space as the genotype-to-phenotype representation imposed by the hardware platform or 
simulation environment. Reconfigurable electronics do impose restrictions on the design space 
due to the construction of routing resources and functional components, but perhaps this 
definition of design space is too narrow, being only one component of a system for hardware 
evolution. 

Expanding on the idea of component re-use, a large design can, in some cases, be partitioned into 
sub-designs. Each design partition could then have an EA which acts only on that section. This 
is especially applicable to digital circuitry, where the design partitions can be easily evaluated 
separately. The partitions could include previously evolved components in combination with 
sections to be evolved to meet new requirements. In this way a parallel effort by several EAs 

16 



would reduce overall time for evolution. Creating an automated method for determining when to 
use previously evolved components in lieu of evolving new components can provide a means of 
reducing evolution time without limiting the design space of the reconfigurable device. This 
system design approach will require careful design of evaluation cases and fitness fimctions. 

Finally, the EA used in intrinsic hardware evolution will need to be prepared to “fire on all 
cylinders” and achieve the rapid convergence that will be required in deployed systems. The 
efforts of Goldberg and other EA theorists should be leveraged in the creation of a platform to 
rapidly, and consistently, evolve good solutions in reconfigurable hardware. These EAs will be 
more complex than those typically used in intrinsic EHW. But, there is an abundance of fast 
processors that can be used to provide an embedded solution that will not allow the increased 
processing needed for such complex EAs to have a significant effect on the total time for the 
evolutionary process. Evaluation time will still be the most significant parameter, and can be 
directly addressed by reducing the total number of evaluations needed via the use of “competent 
EAs” to improve the evolutionary process. 

The analytical development in section 2 does not address the system design space for intrinsic 
hardware evolution. It would be difficult to do so in an equation. But, it does give us insight 
into a portion of the problem we are addressing, and reinforces our feeling that the intrinsic 
EHW community is on the right track. Equations that estimate time to convergence can be 
useful in a strategy for automatically determining convergence. In order to be successful in the 
evolution of complex circuits, a balance between EA theory and implementation of intrinsic 
hardware implementation will have to be struck. Ultimately, a compromise will be made 
between the restriction of design space and the capability for innovation in design. 

5.0 Conclusions 

Scalability (the ability to derive larger and more complex circuits) is a big issue in intrinsic 
EHW. In this paper we derived equations that determine how the design space, N*ngen, grows 
as the programming string gets longer. We have shown that the design space grows as L2. Thus, 
to derive even moderately-complex circuits, the programming time for the reconfigurable device 
quickly grows beyond a reasonable value. And to evolve a circuit that utilizes even half of the 
logic blocks on an FPGA would take dozens of years! 

In addition to programming time, long programming strings lead to other problems that can 
preclude the EA fiom finding a good circuit. First is the problem of genetic drift. That is, some 
of the lower order BBs drift randomly (no selection pressure) till they converge to a suboptimum 
value. When the more salient BBs finally converge, these low order BB(s) can not then get out 
of their present state except through the operation of mutation. The second problem is that there 
are multiple possible solutions to the same circuit. Multiple possible solutions within the device 
can lead to the GA converging to a circuit solution that has a lot of “junk” elements or one that is 
not portable [24]. The lesson here is to pick the smallest possible design space to implement a 
given circuit. 

For other types of Evolutionary Algorithms such as Genetic Programming, more complex 
circuits have been derived as processor speeds have increased [13]. For intrinsic EHW, 
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however, processor speed is not the long pole in the timing equation. Instead, evaluation time 
(the time to evaluate each member of the population) is the biggest factor. Increasing processor 
speeds by even 5 times will not have a significant impact @e., more than 10%) on the overall 
time to implement EHW. Thus, the SABLES approach, where they strive to reduce the 
evaluation time, is a good approach to intrinsic EHW. 

Several researchers have looked at the problem of scalability for intrinsic EHW. From a review 
of the published literature, we observe that researchers using intrinsic EHW are primarily 
concerned with hardware platform development but researchers Concerned with the evolutionary 
process use extrinsic hardware simulatiodevolution. The evolutionary process and the type of 
reconfigurable hardware are intimately tied together and impose limits on each other. These two 
components of hardware evolution are a system and need to be considered together in the design 
of an intrinsic EHW platform. 

We also observe that the equations for N*ngen are estimates and represent the minimum 
evaluations needed. Goldberg and colleagues have pointed out that a selectorecombinative GA 
process must include the identification of linkage between bits the string (chromosome) before 
attempting to converge to a good solution. This is a significant consideration in the design of 
evolutionary algorithms to support evolvable hardware. 

A third observation is that many approaches for evolving complex circuits involve using 
previously evolved circuits or known circuit configurations. The time for evolution is reduced 
by using already evolved components. While such approaches make sense from a time 
standpoint, they can be viewed as limiting the design space, especially when they involve fixing 
portions of a reconfigurable device. 
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